
SCSI Pass Through JNI Helper version 1.5  Technical description 

 

https://scsiexplorer.com  Page 1 

SCSI Pass Through JNI Helper 

Technical Description 

Table of contents 

 

1. Overview .................................................................................................................................................. 1 

2. Supported operating system platforms ............................................................................................... 2 

3. System requirements ............................................................................................................................. 2 

4. Package features ................................................................................................................................... 3 

5. Package classes .................................................................................................................................... 3 

5.1. ScsiPassThrough class.................................................................................................................. 3 

5.2. SptAdapterCaps class ................................................................................................................... 6 

5.3. SptDeviceInfo class ........................................................................................................................ 7 

5.4. SptStatus class ............................................................................................................................... 7 

5.5. SptStatusEx class ........................................................................................................................... 8 

6. Code samples ......................................................................................................................................... 9 

7. Distribution .............................................................................................................................................. 9 

8. Modules ................................................................................................................................................. 10 

9. Running the package ........................................................................................................................... 10 

9.1. Windows ......................................................................................................................................... 10 

9.2. Linux ............................................................................................................................................... 10 

 

1. Overview 

The SCSI Pass Through JNI (SPT JNI) software package provides the programmatic interface 
for Java applications on the Windows and Linux operating system platforms for handling SCSI 
adapters and devices. For Windows operating system platform the native SCSI Pass Through 
(SPT) programmatic interface is used. For Linux operating system platform the native SCSI 
Generic (SG) programmatic interface is used. 

The package allows Java application to enumerate SCSI host bus adapters and SCSI devices, 
and to execute SCSI commands for the SCSI devices. Programmatic interface of the package is 
simple and introduces no limitation on the CDB and data structure. The maximum size of data is 
limited by the maximum transfer length parameter of the SCSI host bus adapter and depends 
on the adapter model and type. For Windows 8 and later operating system platforms the large 
CDB (up to 256 bytes) and bidirectional data transfer are supported. The maximum sense data 
length is 255 bytes. The package gives the Java application all the advantages of handling the 
SCSI devices at relatively low system level. The package does not depend on the type of host 
bus adapter and handles all types of adapters (SCSI, Fibre Channel, iSCSI, etc) in the same 



SCSI Pass Through JNI Helper version 1.5  Technical description 

 

https://scsiexplorer.com  Page 2 

unified way. The package is relatively compact and requires minimum of disk space and 
memory. 

The Java related source code of the package was developed using JDK version 1.8. 

 

2. Supported operating system platforms 

The following Windows operating system platforms are supported: 

 Windows XP 32-bit and 64-bit 

 Windows Server 2003 32-bit and 64-bit 

 Windows Vista 32-bit and 64-bit 

 Windows Server 2008 32-bit and 64-bit 

 Windows 7 32-bit and 64-bit 

 Windows 8 32-bit and 64-bit 

 Windows Server 2012 64-bit 

 Windows 8.1 32-bit and 64-bit 

 Linux 32-bit and 64-bit 
 

NOTE: 64-bit operating system platforms are supported only for AMD64 (x64) processor 
architecture. 

3. System requirements 

Hardware requirements: 
 

 800 MHZ or faster Inter Pentium TM or equivalent CPU. 

 256 MB RAM. The optimal size of RAM depends on the installed Windows operating 
system. 

 10GB hard disk. The optimal size of hard disk depends on the installed Windows 
operating system. 

 15" or greater SVGA display. 

 Standard keyboard and mouse. 

 One or more host bus adapters. 
 
Software requirements: 
 

 Supported Windows or Linux operating system with the necessary service pack 
installed. 

 Java run time environment (JRE) version 1.8 or higher is to be installed on the host 
computer. 

 For Windows operating system platforms before Windows Vista the java process or the 
process that runs the Java VM should be started with local adminstrator user privileges. 
For Windows Vista and later operating system platforms the java process or the process 
that runs the Java VM should be started with highest user privileges (Run as Admin) in 
order to operate the host bus adapter and device objects. 

 
NOTE: It is recommended to install all system patches from Windows Update and Java 
technology sites. 
 



SCSI Pass Through JNI Helper version 1.5  Technical description 

 

https://scsiexplorer.com  Page 3 

4. Package features 

 Host bus adapter (HBA) enumeration. The application gets the array with identifiers of 
installed HBAs. Then the application selects the HBA by the identifier and gets the HBA 
capabilities and enumerates the devices that are connected to HBA. 

 SCSI device enumeration. The package offers two methods of device enumeration. The 
first method enumerates all the devices for selected HBA and returns the array of device 
information units. The second method enumerates all the devices of selected type (disk, 
tape drive, CD/DVD, and media changer) and returns the array of device information 
units. The device information unit includes the device parameters (device object name, 
HBA number, bus number, target ID, and LUN) and identification data (vendor ID, 
product ID, and revision level). 

 Rescanning the SCSI bus for selected HBA. Application can rescan SCSI bus(es) for 
selected HBA. During the rescan operation the SCSI bus is reset (not supported for 
some newest HBA and bus types) and the operating system updates the internal list of 
connected devices. Then the application can enumerate the new set of devices. 

 SCSI command execution. The application can execute SCSI commands using legacy 
and extended command requests. For legacy command request the CDB size is limited 
by 16 bytes and bidirectional transfer is not supported. For Windows 8 and later 
operating system platforms the application can execute extended command requests 
that support large CDBs and bidirectional data transfer. 

 Sense data support. The package supports sense data of up to 255 bytes size. The fixed 
format sense data and descriptor format sense data are parsed transparently and the 
most important fields (sense key, additional sense code, and additional sense code 
qualifier) are returned to the application. The raw sense data are also available to the 
application. 

 Large CDB support. For Windows 8 and later operating system platforms the extended 
command requests with CDB of up to 256 bytes size are supported. The HBA reports 
the support of extended command requests in its capabilities and the application should 
analyze them before making extended command request with large CDB. 

 Bidirectional data support. For Windows 8 and later operating system platforms the 
extended command requests with both input and output data are supported. The HBA 
reports the support of extended command requests in its capabilities and the application 
should analyze them before making extended command request with bidirectional data 
transfer. 

 32-bit and 64-bit operating system support. The package supports both x86 and x64 
Windows and Linux operating system platforms and JRE versions. The package 
capacity should match the JRE capacity. 

 Sample Java application that demostrates the use of classes and methods for all 
operations. 
 

5. Package classes 

 

5.1. ScsiPassThrough class 

The scsi.ScsiPassThrough class is the main class in the SPT JNI package. It provides all 
necessary methods to work with the SPT interface. 

The class declaration is located in the scsi\ScsiPassThrough.java source file. 

The class implements the following methods. 

Method Description 

enumAdapters Returns the list of identifiers of installed SCSI adapters. 

enumDevices Returns the list of SCSI devices for selected SCSI adapter. 

mk:@MSITStore:D:/Projects/SptJni/SptJni/Hlp/SptJni.chm::/scsi_pass_through_class.htm#enumDevices


SCSI Pass Through JNI Helper version 1.5  Technical description 

 

https://scsiexplorer.com  Page 4 

enumDevicesType Returns the list of SCSI devices for selected SCSI device type. 

executeCommand Executes SCSI command for selected SCSI device using legacy SCSI 
request block. 

executeCommandEx Executes SCSI command for selected SCSI device using storage 
request block. 

getAdapterCaps Returns the parameters of selected SCSI adapter. 

getAdapterCount Returns the total number of SCSI adapters. 

rescanBus Rescans the SCSI bus(es) for selected SCSI adapter. 

Other definitions of class. 

Definition Description 

public static final byte SCSIOP_XXX SCSI command code values as defined by the SCSI 
standard. These definitions include most but not all 
commands. Refer to the SCSI standard for more 
information. 

enumAdapters method 

public int [] enumAdapters () 

The enumAdapters method returns the array of zero-based SCSI adapter numbers. These 
values should be passed to the other methods that require adapter number. Method does not 
have arguments. 

enumDevices method 

public SptDeviceInfo [] enumDevices (int nAdapter) 

The enumDevices method enumerates the SCSI devices that are connected to the SCSI 
adapter and returns the array of instances of SptDeviceInfo class. Each instance of 
SptDeviceInfo class represents single SCSI device. If no SCSI devices are connected to the 
adapter, the array is empty. If wrong adapter number is passed to the method or the internal 
error occurred, the returned value is null. Method accepts the following arguments. 

Argument Description 

int nAdapter Zero-based SCSI adapter number. If -1 value is passed the returned device list 
includes all devices connected to all adapters. 

enumDevicesType method 

public SptDeviceInfo [] enumDevicesType (int nType) 

The enumDevicesType method enumerates the SCSI devices of the specified type and returns 
the array of instances of SptDeviceInfo class. Each instance of SptDeviceInfo class represents 
single SCSI device. If no SCSI devices of the specified type were detected, the array is empty. If 
wrong or unsupported device type value is passed to the method or the internal error occurred, 
the returned value is null. Method accepts the following arguments. 

Argument Description 

int nType SCSI device type as specified by the SCSI standard. If -1 value is passed the 
returned device list includes devices of all types. 

The following device types are supported by the method. 

Type Description 

0 Direct access block device (e.g., magnetic disk). 

1 Sequential-access device (e.g., magnetic tape). 

5 CD/DVD device. 

7 Optical memory device (e.g., some optical disks). 

8 Media changer device (e.g., jukeboxes). 

executeCommand method 

mk:@MSITStore:D:/Projects/SptJni/SptJni/Hlp/SptJni.chm::/scsi_pass_through_class.htm#executeCommand
mk:@MSITStore:D:/Projects/SptJni/SptJni/Hlp/SptJni.chm::/scsi_pass_through_class.htm#executeCommand
mk:@MSITStore:D:/Projects/SptJni/SptJni/Hlp/SptJni.chm::/scsi_pass_through_class.htm#getAdapterCaps
mk:@MSITStore:D:/Projects/SptJni/SptJni/Hlp/SptJni.chm::/scsi_pass_through_class.htm#getAdapterCount
mk:@MSITStore:D:/Projects/SptJni/SptJni/Hlp/SptJni.chm::/scsi_pass_through_class.htm#rescanBus


SCSI Pass Through JNI Helper version 1.5  Technical description 

 

https://scsiexplorer.com  Page 5 

public SptStatus executeCommand (String sDeviceName, int 

nAdapterNumber, int nBusNumber, int nTargetNumber, int 

nLogicalUnitNumber, byte[] chCdb, boolean bDataIn, byte[] chData, int 

nRequestTimeout) 

The executeCommand method passes the SCSI command to the SCSI device using legacy 
SCSI request block and returns the command status in the instance of SptStatus class. If wrong 
device parameters (adapter number, bus number, target SCSI ID, LUN) are passed to the 
method or the internal error occurred, the returned value is null. Method accepts the following 
arguments. 

Argument Description 

String sDeviceName Device object name. The device object name string should be taken 
from device information returned during device enumeration. If device 
name string is valid the other device parameters (adapter number, 
bus number, target SCSI ID, and logical unit number) are ignored and 
command request is passed to target device object. If device name 
string is empty the device parameters are used and command request 
is passed to SCSI port device object. 

int nAdapter Zero-based SCSI adapter number. 

int nBusNumber Zero-based SCSI bus number. The value of this argument should be 
taken from the device information data. 

int nTargetNumber Target SCSI ID. The value of this argument should be taken from the 
device information data. 

int nLogicalUnitNumber Logical unit number. The value of this argument should be taken from 
the device information data. 

byte[] chCdb Binary data of command descriptor block (CDB). Refer to the SCSI 
standard or to the SCSI device reference for the structure of CDB. 
The CDB length is limited by 16 bytes. 

boolean bDataIn Flag of inbound (from the device to the initiator) data. If this flag is 
false, the data are outbound (from the initiator to the device). 

byte[] chData Buffer for input (from the device) or output (to the device) data. If 
command does not pass data, this argument should have null value. 
For inbound data the initial size of the buffer will be used as allocation 
length parameter. Actually the device may return less data than 
requested. 

int nRequestTimeout Command timeout in seconds. 

executeCommandEx method 

public SptStatusEx executeCommandEx (String sDeviceName, int 

nAdapterNumber, int nBusNumber, int nTargetNumber, int 

nLogicalUnitNumber, byte[] chCdb, byte[] chInputData, byte[] 

chOutputData, int nRequestTimeout) 

The executeCommandEx method passes the SCSI command to the SCSI device using storage 
request block and returns the command status in the instance of SptStatusEx class. If wrong 
device parameters (adapter number, bus number, target SCSI ID, LUN) are passed to the 
method or the internal error occurred, the returned value is null. The storage request block can 
be passed to the device only when adapter capabilities data have the value 1 in the nSrbType 
field. Method accepts the following arguments. 

Argument Description 

String sDeviceName Device object name. The device object name string should be taken 
from device information returned during device enumeration. If device 
name string is valid the other device parameters (adapter number, 
bus number, target SCSI ID, and logical unit number) are ignored and 
command request is passed to target device object. If device name 
string is empty the device parameters are used and command request 



SCSI Pass Through JNI Helper version 1.5  Technical description 

 

https://scsiexplorer.com  Page 6 

is passed to SCSI port device object. 

int nAdapterNumber Zero-based SCSI adapter number. 

int nBusNumber Zero-based SCSI bus number. The value of this argument should be 
taken from the device information data. 

int nTargetNumber Target SCSI ID. The value of this argument should be taken from the 
device information data. 

int nLogicalUnitNumber Logical unit number. The value of this argument should be taken from 
the device information data. 

byte[] chCdb Binary data of command descriptor block (CDB). Refer to the SCSI 
standard or to the SCSI device reference for the structure of CDB. 
The CDB length is limited by 256 bytes. 

byte[] chInputData Buffer for input (from the device) data. If command does not pass 
input data, this argument should have null value. Actual number of 
received data is returned in the status data. 

byte[] chOutputData Buffer for output (to the device) data. If command does not pass 
output data, this argument should have null value. Actual number of 
sent data is returned in the status data. 

int nRequestTimeout Command timeout in seconds. 

getAdapterCaps method 

public SptAdapterCaps getAdapterCaps (int nAdapter) 

The getAdapterStatus method returns the instance of the SptAdapterCaps class that contains 
the parameters of the SCSI adapter. If wrong adapter number is passed to the method or the 
internal error occurred, the returned value is null. Method accepts the following arguments. 

Argument Description 

int nAdapter Zero-based SCSI adapter number. 

getAdapterCount method 

public int getAdapterCount () 

The getAdapterCount method returns total number of SCSI adapters that are installed on the 
system. In case of internal error the -1 value is returned. Method does not have arguments. 

rescanBus method 

public boolean rescanBus (int nAdapter) 

The rescanBus method rescans SCSI bus(es) of the SCSI adapter. If operation was performed 
successfully the returned value is true. If wrong adapter number was passed to the method or 
the internal error occurred, the returned value is false. Method accepts the following arguments. 

Argument Description 

int nAdapter Zero-based SCSI adapter number. 

 

5.2. SptAdapterCaps class 

The scsi.ScsiAdapterCaps class is the container class that includes data fields for SCSI adapter 
parameters. The instance of this class is returned by the getAdapterCaps method of 
scsi.ScsiPassThrough class. 

The class declaration is located in the scsi\SptAdapterCaps.java source file. 

The class includes the following fields. 

Field Description 

public int nMaximumTransferLength Maximum amount of data in bytes that can be 
transferred by single command. 

public int nInitiatorId Initiator SCSI ID for bus 0. 



SCSI Pass Through JNI Helper version 1.5  Technical description 

 

https://scsiexplorer.com  Page 7 

public String sDisplayName Display name for user interface. 

public int nSrbType Type of supported SCSI request block. The following 
values are defined for this field: 

 0 Legacy SCSI Request Block 

 1 Storage Request Block 

public int nAddressType Type of supported SCSI device address. The following 
values are defined for this field: 

 0 8-bit bus, target, and LUN addressing 

If adapter supports legacy SCSI request block the CDB length is limited by 16 bytes and 
bidirectional data transfer is not supported. If adapter supports storage request block the CDB 
length is limited by 256 bytes and bidirectional data transfer is supported. Refer to the 
description of executeCommand(Ex) methods of ScsiPassThrough class for more information. 

 

5.3. SptDeviceInfo class 

The scsi.SptDeviceInfo class is the container class that includes data fields for SCSI device 
parameters. The array of instances of this class is returned by the enumDevices and 
enumDevicesType methods of scsi.ScsiPassThrough class. 

The class declaration is located in the scsi\SptDeviceInfo.java source file. 

The class includes the following fields. 

Field Description 
public int nAdapter Zero-based SCSI adapter number. 
public int nBus Zero-based SCSI bus number. 
public int nTargetId Target SCSI ID. 
public int nLun Logical unit number (LUN). 
public int nType SCSI device type as specified by the SCSI standard. 
public int nDevice Zero-based device number. If named device object is not 

available the device number is -1. 
public String sName Device name string. See the comment below about the device 

name structure. If named device object is not available the 
device name string is empty. 

public String sVendorId Vendor ID string. 
public String sProductId Product ID string. 
public String sRevisionLevel Device firmware revision level string. 

For magnetic and optical disk device the device name has the form PhysicalDriveN, where N is 
the device number. For tape drive device the device name has the form TapeN. For CD/DVD 
devices the device name has the form CdRomN. For media changer devices the device name 
has the form ChangerN. 

 

5.4. SptStatus class 

The scsi.SptStatus class is the container for SCSI command status data. The instance of this 
class is returned by the executeCommand method of the scsi.ScsiPassThrough class. 

The class declaration is located in the scsi\SptStatus.java source file. 

The class includes the following fields. 

Field Description 

public byte byteAdapterStatus 
Adapter status. If this field has 
SPT_ADAPTER_STATUS_GOOD value, the SCSI 
status data field is valid. 



SCSI Pass Through JNI Helper version 1.5  Technical description 

 

https://scsiexplorer.com  Page 8 

public byte byteScsiStatus 
SCSI status. If this field has 
SCSI_STATUS_CHECK_CONDITION value, the 
sense data fields are valid. 

public byte byteSenseKey 
Sense key field of sense data. This field is valid 
only when SCSI status has 
SCSI_STATUS_CHECK_CONDITION value. 

public byte byteAdditionalSenseCode 
ASC field of sense data. This field is valid only 
when SCSI status has 
SCSI_STATUS_CHECK_CONDITION value. 

public byte 
byteAdditionalSenseCodeQualifier 

ASCQ field of sense data. This field is valid only 
when SCSI status has 
SCSI_STATUS_CHECK_CONDITION value. 

public byte byteSenseData 
Raw sense data. This field is valid only when SCSI 
status has SCSI_STATUS_CHECK_CONDITION 
value. 

public int nDataCount The size of received data for data IN commands. 
This field is always valid. 

public int nExecutionTime Total time of command execution in milliseconds. 
This field is always valid. 

Other definitions of class. 

Definition Description 

public static final byte 
SPT_ADAPTER_STATUS_XXX Adapter status values. 

public static final byte SCSI_STATUS_XXX SCSI status values. These values are 
defined by the SCSI standard. 

public static final byte SCSI_SENSE_XXX Sense key values. These values are 
defined by the SCSI standard. 

 

5.5. SptStatusEx class 

The scsi.SptStatusEx class is the container for SCSI command status data. The instance of this 
class is returned by the executeCommandEx method of the scsi.ScsiPassThrough class. 

The class declaration is located in the scsi\SptStatusEx.java source file. 

The class includes the following fields. 

Field Description 
public byte byteAdapterStatus Adapter status. If this field has 

SPT_ADAPTER_STATUS_GOOD value, the SCSI 
status data field is valid. 

public byte byteScsiStatus SCSI status. If this field has 
SCSI_STATUS_CHECK_CONDITION value, the sense 
data fields are valid. 

public byte byteSenseKey Sense key field of sense data. This field is valid only 
when SCSI status has 
SCSI_STATUS_CHECK_CONDITION value. 

public byte byteAdditionalSenseCode ASC field of sense data. This field is valid only when 
SCSI status has SCSI_STATUS_CHECK_CONDITION 
value. 

public byte ASCQ field of sense data. This field is valid only when 



SCSI Pass Through JNI Helper version 1.5  Technical description 

 

https://scsiexplorer.com  Page 9 

byteAdditionalSenseCodeQualifier SCSI status has SCSI_STATUS_CHECK_CONDITION 
value. 

public byte byteSenseData Raw sense data. This field is valid only when SCSI 
status has SCSI_STATUS_CHECK_CONDITION 
value. 

public int nInputDataCount The size of received IN data in bytes. This field is 
always valid. 

public int nOutputDataCount The size of sent OUT data in bytes. This field is always 
valid. 

public int nExecutionTime Total time of command execution in milliseconds. This 
field is always valid. 

 

6. Code samples 

The sample code that illustrates the use of classes is included into the package help system for 
the following operations. 

 Host bus adapter enumeration. 

 Device enumeration. 

 Rescanning SCSI bus. 

 SCSI command with no data transfer (Test Unit Ready (00h) command). 

 SCSI command with input data transfer (Inquiry (12h) command for Unit Serial Number 
(80h) page). 

 SCSI command with output data transfer (Write Buffer (3Bh) for writing the data to echo 
buffer). 

Refer to the package help system for Java source code fragments. 

The package also includes simple sample Java application that demostrates the use of classes 
and methods for all operations. The Test.java source file is located in the archive with source 
code in the Packages subfolder. 

 

7. Distribution 

The package is distributed in binary and source code form. 

The binary form includes executable (DLL, CLASS, JAR) modules as well as compiled MSI-files 
for 32-bit and 64-bit configurations. There are separate packages for Windows and some Linux 
operating system platforms. 

The source code form includes the entire solution that can be built in MS Visual Studio 
environment or on Linux operating system platform. 

The following tools are necessary in order to successfully build the package on Windows. 

 MS Visual Studio 2010 

 Windows Driver Kit version 7.1 

 Java Development Kit version 1.8 

The following tools are necessary in order to successfully build the package on Linux. 

 G++ compiler 

 Java Development Kit version 1.8 

The Doc subfolder in the project tree contains the build instruction document that provides 
detailed description of all build steps. 

 



SCSI Pass Through JNI Helper version 1.5  Technical description 

 

https://scsiexplorer.com  Page 10 

8. Modules 

The software package includes the following modules: 

scsi\ScsiPassThrough.java  

 Java source file that contains declaration of the scsi.ScsiPassThrough class.  

scsi\SptAdapterCaps.java  

 Java source file that contains declaration of the scsi.SptAdapterCaps class.  

scsi\SptDeviceInfo.java  

 Java source file that contains declaration of the scsi.SptDeviceInfo class. 

scsi\SptStatus.java  

 Java source file that contains declaration of the scsi.SptStatus class.  

scsi\SptStatusEx.java  

 Java source file that contains declaration of the scsi.SptStatusEx class.  

spt.jar  

 Compiled Java source code that is included into the JAR-file. The JAR-file is made up 
 using the JDK version 1.7.0_75.  

SptJni.dll  

JNI interface DLL library. In order to make this module lodable for any application, it 
should be located in the folder that is included into the system environment variable 
"PATH". The alternative way to load the module is to specify the path to folder using 
java.library.path definition. This module is available for Windows operating system 
platform in 32-bit and 64-bit forms. 

libSptJni.so  

JNI interface shared object library. In order to make this module lodable for any 
application, it should be located in the folder that is included into the system environment 
variable "PATH". The alternative way to load the module is to specify the path to folder 
using java.library.path definition. This module is available for Linux operating system 
platform in 32-bit and 64-bit forms. 

SptJni.chm  

 Hyper text help file. 

All modules are fully redistributable. 

9. Running the package 

9.1. Windows 

On Windows operating system platform the Java process should be run with elevated user 
privileges (Run as Admin). 

9.2. Linux 

On Linux operating system platform the necessary privilege level depends on the type of device 
being accessed. 

For CD/DVD/BD drive devices the normal user privilege level is usually sufficient. 

For disk devices the highest super user (or root) privilege level is necessary. 

For other devices the necessary privilege level may depend on Linux distribution and device 
type. 



SCSI Pass Through JNI Helper version 1.5  Technical description 

 

https://scsiexplorer.com  Page 11 

If storage device management application needs to access devices of all types, the Java 
process needs to run at the highest super user (or root) privilege level. 


	1. Overview
	2. Supported operating system platforms
	3. System requirements
	4. Package features
	5. Package classes
	5.1. ScsiPassThrough class
	5.2. SptAdapterCaps class
	5.3. SptDeviceInfo class
	5.4. SptStatus class
	5.5. SptStatusEx class

	6. Code samples
	7. Distribution
	8. Modules
	9. Running the package
	9.1. Windows
	9.2. Linux


